4.6 Article

Characterizing rhizome bud dormancy in Polygonatum kingianum: Development of novel chill models and determination of dormancy release mechanisms by weighted correlation network analysis

Journal

PLOS ONE
Volume 15, Issue 4, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0231867

Keywords

-

Funding

  1. Chinese Agricultural University

Ask authors/readers for more resources

This study was conducted to explore specific chill models and the mechanisms underlying rhizome bud dormancy break in Polygonatum kingianum. Rhizome buds were subjected to various chilling temperatures for different duration and then transferred to warm conditions for germination and subsequent evaluation of their response to temperature and chilling requirements. A CUkingianum model was constructed to describe the contribution of low temperature to the chill unit, and it was suggested that 2.97 degrees C was the optimum temperature and that 11.54 degrees C was the upper limit for bud release. The CAS(kingianum) model showed the relationship between chilling accumulation and sprouting percentage; therefore, rhizome bud development could be predicted through the model. Weighted correlation network analysis (WGCNA) of transcriptomic data of endo-, eco- and nondormant rhizome buds generated 33 gene modules, 6 of which were significantly related to bud sprouting percentage. In addition, 7 significantly matched transcription factors (TFs) were identified from the promoters of 17 real hub genes, and DAG2 was the best matched TF that bound to AAAG element to regulate gene expression. The current study is valuable for developing a highly efficient strategy for seedling cultivation and provides strong candidates for key genes related to rhizome bud dormancy in P. kingianum.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available