4.5 Article

Synthesis and Characterization of Oxygen Vacancy Induced Narrow Bandgap Tungsten Oxide (WO3-x) Nanoparticles by Plasma Discharge in Liquid and Its Photocatalytic Activity

Journal

PLASMA CHEMISTRY AND PLASMA PROCESSING
Volume 40, Issue 4, Pages 1019-1036

Publisher

SPRINGER
DOI: 10.1007/s11090-020-10073-3

Keywords

In-liquid plasma; Nanoparticles; Oxygen vacancy; Narrow bandgap; Photocatalytic efficiency

Ask authors/readers for more resources

Narrow bandgap tungsten oxide (WO3-x) nanoparticles have been synthesized by single-step plasma discharge in deionized water between two vertically pointed tungsten electrodes. Bombardment of energetic electrons on the as-formed nanoparticles in the plasma zone creates defect states. Formation of electron-rich oxygen vacancies on the crystal planes and grain boundary defects have been investigated. The peak shift and broadening in the Raman and FTIR spectra indicate the formation of oxygen vacancies and sub-stoichiometric WO3 nanoparticles. EDX analysis provides the ratio of tungsten to oxygen to be around 1:2.4. Optical bandgap has been found to be 2.15 eV, which is less than the bulk value of 2.54 eV. Observation of higher amount of defect states from TEM and XPS provides the reason for the formation of narrow bandgap tungsten oxide nanoparticles. The photocatalytic efficiency of the plasma synthesize WO3-x nanoparticles is found to be higher than that of commercial bulk and nano WO3 particles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available