4.3 Article

High temperature during soybean seed development differentially alters lipid and protein metabolism

Journal

PLANT PRODUCTION SCIENCE
Volume 23, Issue 4, Pages 504-512

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/1343943X.2020.1742581

Keywords

High temperature; seed filling; storage compounds; soybean

Categories

Funding

  1. Japan Society for the Promotion of Science [JP16H04867]

Ask authors/readers for more resources

High temperatures during seed development can affect the seed yield and quality in many crops. Here, we analyzed how high temperature alters the main seed storage compounds (lipid and protein) in soybean. At five days after R5 stage (initial seed filling stage), soybean plants were treated with control (20/20oC day/night) and high temperature (30/30oC day/night). After treatment, immature seed was sampled, analyzed for lipid and protein contents and for expression of seed storage compounds related genes. High temperature during seed filling increased lipid content but decreased protein content, associating with yield reduction. It increased the expression of two genes related to seed lipid biosynthesis (GmBCCP2 and GmKAS1) and genes for a lipid biosynthesis regulator (GmWRI1) and its transcription factor (GmDREBL), and decreased the expression of genes related to lipid degradation such as GmACXs. High temperature downregulated genes related to seed storage protein (GmGy1, GmGy2, GmGy4, GmGy5 and Gm beta-conglycinin) and upregulated genes for cysteine and aspartate proteinases. Therefore, high temperature during seed filling preferentially accumulates lipid than protein content in seed, although seed yield reduction was associated with lower seed protein content in soybean. Our study provides insights for further improvements of soybean seed oil under abiotic stress such as heat stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available