4.7 Article

Characterization of the CsPNG1 gene from cucumber and its function in response to salinity stress

Journal

PLANT PHYSIOLOGY AND BIOCHEMISTRY
Volume 150, Issue -, Pages 140-150

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2020.02.027

Keywords

Cucumber; Salt stress; PNG1; RAD23; Promoter cloning; Protein interaction

Categories

Funding

  1. National Natural Science Foundation of China [31672199]
  2. China Earmarked Fund for Modern Agro-industry Technology Research System [CARS-23-B12]

Ask authors/readers for more resources

Peptide: N-glycanase (PNGase; EC 3.5.1.52) is a deglycosylation enzyme that is responsible for deglycosylating misfolded glycoproteins in the endoplasmic reticulum. However, the role of PNGase in plants is largely unknown. Here, we cloned and characterized the function of peptide: N-glycanase (CsPNG1) from cucumber. The amino acid encoded by CsPNG1 gene contained a typical transglutaminase (TGase) catalytic triad domain and belonged to the TGase superfamily. Subcellular localization showed that CsPNG1 was located in the cell membrane and nucleus. Promoter sequence analysis and qPCR tests showed that CsPNG1 could respond to a variety of abiotic stresses and hormone treatments. Yeast one-hybrid assays revealed the interaction between the transcription factor CsGT-3b and CsPNG1 promoter. Importantly, overexpression of CsPNG1 in tobacco increased the tolerance to salt stress of transgenic plants. In addition, CsPNG1 interacted with CsRAD23 family proteins and the C-terminal UBA domain of CsRAD23 protein was responsible for binding to CsPNG1, indicating that CsPNG1 was involved in the ER-associated degradation pathway (ERAD). Taken together, our study demonstrated that CsPNG1 plays a positive role in improving plant salt tolerance, and these findings might provide a basis for further functional analysis of CsPNG1 genes in abiotic stress and ERAD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available