4.7 Article

Virus Accumulation and Whitefly Performance Modulate the Role of Alternate Host Species as Inoculum Sources of Tomato Yellow Leaf Curl Virus

Journal

PLANT DISEASE
Volume 104, Issue 11, Pages 2958-2966

Publisher

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/PDIS-09-19-1853-RE

Keywords

Begomovirus; alternate host; Bemisia tabaci; virus transmission

Categories

Funding

  1. Georgia Commodity Commission for Vegetables (GACCV)

Ask authors/readers for more resources

Evaluating alternate hosts that facilitate the persistence of a virus in the landscape is key to understanding virus epidemics. In this study, we explored the role of several plant species (eggplant, pepper, and Palmer amaranth) as inoculum sources of tomato yellow leaf curl virus (TYLCV) and as reservoirs for its insect vector, Bemisia tabaci (Gennadius). All inoculated species were infected with TYLCV, but whiteflies acquired fewer viral copies via feeding from pepper and eggplant than from tomato and Palmer amaranth. Further, back-transmission assays to recipient tomato resulted in TYLCV infection only when TYLCV was acquired from Palmer amaranth or tomato. Analysis suggested that the role of plant species as TYLCV inoculum sources may be determined by the accumulation of viral copies in the plant, and consequently in the insect vector. In addition, results showed that all three alternate species could sustain populations of B. tabaci, while differentially influencing fitness of whiteflies. Eggplant was a superior host for whiteflies, whereas whitefly survival was compromised on pepper. Together, we demonstrate that both plant-virus and plant-vector interactions could influence the role of an alternate host in TYLCV epidemics, and in our region of study we highlight the potential risk of hosts such as Palmer amaranth in the spread of TYLCV.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available