4.7 Article

Data-driven recovery of hidden physics in reduced order modeling of fluid flows

Journal

PHYSICS OF FLUIDS
Volume 32, Issue 3, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/5.0002051

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research [DE-SC0019290]
  2. agency of the United States Government

Ask authors/readers for more resources

In this article, we introduce a modular hybrid analysis and modeling (HAM) approach to account for hidden physics in reduced order modeling (ROM) of parameterized systems relevant to fluid dynamics. The hybrid ROM framework is based on using first principles to model the known physics in conjunction with utilizing the data-driven machine learning tools to model the remaining residual that is hidden in data. This framework employs proper orthogonal decomposition as a compression tool to construct orthonormal bases and a Galerkin projection (GP) as a model to build the dynamical core of the system. Our proposed methodology, hence, compensates structural or epistemic uncertainties in models and utilizes the observed data snapshots to compute true modal coefficients spanned by these bases. The GP model is then corrected at every time step with a data-driven rectification using a long short-term memory (LSTM) neural network architecture to incorporate hidden physics. A Grassmann manifold approach is also adopted for interpolating basis functions to unseen parametric conditions. The control parameter governing the system's behavior is, thus, implicitly considered through true modal coefficients as input features to the LSTM network. The effectiveness of the HAM approach is then discussed through illustrative examples that are generated synthetically to take hidden physics into account. Our approach, thus, provides insights addressing a fundamental limitation of the physics-based models when the governing equations are incomplete to represent underlying physical processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available