4.5 Article

Controllable Patterning of Hybrid Silicon Nanowire and Nanohole Arrays by Laser Interference Lithography

Journal

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/pssr.202000024

Keywords

metal-assisted chemical etching; nanofabrication; silicon nanostructures; silicon nanowires; silicon nanoholes

Ask authors/readers for more resources

Metal-assisted chemical etching (MACE) is a cost-effective method to fabricate Si nanostructures including silicon nanowires (SiNWs) and silicon nanoholes (SiNHs). However, the preparation of metallic template for MACE would require complex experimental conditions including strict cleaning process and multiple steps. Herein, superlens-enhanced laser interference lithography is applied to directly fabricate complicated metallic patterns and then MACE is used to obtain hybrid SiNW and SiNH arrays. Ag films are first deposited on Si substrates, and then a 1064 nm high power laser source is utilized to generate two-beam interference electric fields. Because Ag molecules are very sensitive to any input energy change, they tend to break up or aggregate and form different Ag patterns which have a specific energy threshold to lower its free energy. By manipulating the distribution of input electric field, complicated metallic patterns and their corresponding Si nanostructures with feature sizes that range from tens of nanometers to several micrometers are obtained.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available