4.5 Article

Antimonene/bismuthene vertical Van-der Waals heterostructure: A computational study

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.physe.2019.113914

Keywords

DFT; 2D materials; Antimonene; Bismuthene; Heterostructure

Funding

  1. Research Council of the University of Guilan

Ask authors/readers for more resources

In this paper, the structural, electronic, mechanical and optical properties of antimonene/bismuthene Van-der Waals heterostructure (Sb/Bi HS) were calculated based on the first principle density functional theory. We explored different stacks of Sb/Bi HS to find the most and the least stable staking for this heterostructure. At the GGA level of theory, the most stable model is a semiconductor with an indirect band gap of 159 meV. However, when the spin-orbit (SO) interaction is considered, the VBM and CBM touch the Fermi level and the HS becomes a semimetal. Our results also show that the electronic properties of the HS are robust against the external electric field and biaxial strain. Young's modulus was calculated as 64.3 N/m which predicts this HS as a resistant material against being stretched or compressed. The calculated optical properties, similar to monolayer antimonene, are completely dependent on the polarization of incident light and differ when parallel or perpendicular polarization is considered. Moreover, the absorption coefficient for perpendicular polarization in the visible region is significantly increased in comparison with the monolayer antimonene. High structural stability, electronic and mechanical robustness against electric field and strain, along with polarization-dependent optical properties of this HS, promise for its applications in beam splitters and nano-scale mirrors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available