4.7 Article

Redox maintenance and concerted modulation of gene expression and signaling pathways by a nanoformulation of curcumin protects peripheral blood mononuclear cells against gamma radiation

Journal

CHEMICO-BIOLOGICAL INTERACTIONS
Volume 257, Issue -, Pages 81-93

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cbi.2016.07.021

Keywords

Radiation; Curcumin; Nano; Peripheral blood; Nrf2; BBC3

Funding

  1. University of Tehran
  2. Tarbiat Modares University
  3. Iranian Scholars Association

Ask authors/readers for more resources

Exposure to ionizing radiation (IR) could be detrimental to health. Oxidative stress, DNA damage, and inflammation are implicated in radiation damage. Curcumin, a natural polyphenol, has remarkable antioxidant, anti-inflammation and anticarcinogenic properties and is reported to protect cells and organisms against gamma-rays. We have recently enhanced solubility of curcumin via a novel dendrosomal nanoformulation (DNC). The objective of this study was to assess the potential efficacy of this nano formulation in protecting human peripheral blood mononuclear cells (PBMC) against gamma-radiation. IR-induced damage was evident in reactive oxygen species, antioxidant enzymes activities, glutathione, lipid peroxidation, and viability assays. Treatment by DNC, showing superiority to curcumin, effectively counteracted these effects and reduced DNA damage as determined via 8-OHdG levels and lipid per oxidation as measured by the level of TBARS (as well as lipid hydroperoxides and 8-isoprostane). PBMC pretreatment by DNC prior to irradiation proved effective as well. Uptake kinetics revealed enhanced uptake of DNC compared to curcumin, particularly after irradiation. DNC suppressed IR-induced NF-kappa B activation 18 h post-irradiation. It induced Nrf2 binding activity early after irradiation which was sustained to 18 h. Gene expression analysis of a chosen set of radiation response genes in irradiated PBMC revealed a similar profile for DNA damage response and repair genes including FDXR, XPC, DDB2, and GADD45 in DNC-treated cells compared to IR control. However, in response to radiation, an altered profile of expression was noticed for CDKN1A (p21), MDM2, IFNG, and BBC3 (PUMA) genes after DNC treatment. (C) 2016 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available