4.4 Article

Quercetin-loaded nanoparticles enhance cytotoxicity and antioxidant activity on C6 glioma cells

Journal

PHARMACEUTICAL DEVELOPMENT AND TECHNOLOGY
Volume 25, Issue 6, Pages 757-766

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10837450.2020.1740933

Keywords

Quercetin; nanoparticle; PLGA; cytotoxicity; antioxidant activity; C6 glioma

Funding

  1. Research Foundation of Yildiz Technical University [FKG-2017-3067]

Ask authors/readers for more resources

Quercetin (Qu) is a natural flavonoid present in many commonly consumed food items. The dietary phytochemical quercetin prevents tumor proliferation and is a potent therapeutic cancer agent. The purpose of this study was to synthesize and characterize quercetin-loaded poly(lactic-co-glycolic acid) nanoparticles (Qu(1)NP, Qu(2)NP, and Qu(3)NP) with different size and encapsulation properties and to evaluate their in vitro activity on C6 glioma cells. Nanoparticles were synthesized by single emulsion solvent evaporation method. Then, particle size, zeta potential, polydispersity index and encapsulation efficiency of nanoparticles were determined. Particle size of Qu(1)NP, Qu(2)NP, and Qu(3)NPs were determined as 215.2 +/- 6.2, 282.3 +/- 7.9, and 584.5 +/- 15.2 nm respectively. Treating C6 glioma cells with all nanoparticle formulations effectively inhibited the cell proliferation. Qu(1)NPs were showed the lowest IC50 value in 48 h with 29.9 mu g/ml and achieved higher cellular uptake among other nanoparticles and Qu. Additionally, 48-h treatment with Qu(1)NPs significantly decreased MDA level (14.90 nmol/mu g protein) on C6 glioma cells which is related to reduced oxidative stress in cells. Findings of this study revealed that quercetin's cellular uptake and anti-oxidant activity is improved by small-sized Qu(1)NPs in C6 glioma cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available