4.7 Article

The immature rat as a potential model for chemical risks to children: Ontogeny of selected hepatic P450s

Journal

CHEMICO-BIOLOGICAL INTERACTIONS
Volume 256, Issue -, Pages 167-177

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cbi.2016.07.005

Keywords

Animal model; Children's risk assessment; Cytochrome P450 ontogeny; Carbon tetrachloride; Metabolic activation; Hepatotoxicity

Funding

  1. U.S. Pharmacopeia Fellowship
  2. University of Georgia Interdisciplinary Toxicology Program
  3. U.S. ATSDR [200-2004-M-09830]

Ask authors/readers for more resources

Concern about potential susceptibilities of infants and children to chemicals has led to the consideration of immature rodents as potential test surrogates. Maturation of some hepatic microsomal cytochrome P450s (CYPs), that participate in metabolic activation of organic solvents and polycyclic aromatic hydrocarbons (PAHs), may differ significantly between humans and rodents. The present investigation was undertaken to delineate the ontogeny of selected hepatic CYP5 in male and female Sprague-Dawley (S-D) rats, and to contrast them with developmental profiles in humans. Microsomes were prepared from the liver of sexed and unsexed postnatal day (PND) 1-90 rats, and total CYP450 levels, as well as CYP1A1/2, CYP2E1 and CYP2B1/2 activities and protein, were quantified. CYP1A1/2 and CYP2E1 activity and expression rose rapidly after birth, peaked from PND 21-40/50, and declined substantially to adult values by PND 90. The same ontogenic profiles were manifested when the enzyme activities were expressed per entire liver or liver normalized to body weight. CYP1A1/2 and CYP2E1 activity and protein expression were well correlated. CYP2B1/2 activity peaked abruptly on PND 21 and declined irregularly to adult values. These patterns are in contrast to human CYP1A2 and CYP2E1, which are reported to progressively increase in liver during the first few months to years of life. The three CYP protein developmental profiles were largely gender independent in rats. The immature rat does not appear to be a suitable model for assessing risks posed to infants and children by chemicals metabolically activated by CYP2E1, based on the findings of greater carbon tetrachloride hepatotoxicity in preweanlings and weanlings than in adult animals. Additional studies are required to determine whether immature S-D rats may be used as an animal model for substrates of other CYP5, as total CYP450 levels in the liver progressively rose during maturation, similarly to humans. (C) 2016 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available