4.3 Article

Tanshinone IIA Protects against Acute Pancreatitis in Mice by Inhibiting Oxidative Stress via the Nrf2/ROS Pathway

Journal

OXIDATIVE MEDICINE AND CELLULAR LONGEVITY
Volume 2020, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2020/5390482

Keywords

-

Categories

Funding

  1. National Natural Science Foundation [81801970, 81570584, 81870441]
  2. Natural Science Foundation of Jiangsu Province [BK20190907]
  3. Six Talent Peaks Project of Jiangsu Province [WSN-325]
  4. Postdoctoral Science Foundation of China [2018M632260]
  5. Postdoctoral Science Foundation of Jiangsu Province [1701047C]

Ask authors/readers for more resources

Background. Danshen (Salvia miltiorrhiza Bunge) and its main active component Tanshinone IIA (TSA) are clinically used in China. However, the effects of TSA on acute pancreatitis (AP) and its potential mechanism have not been investigated. In this study, our objective was to investigate the protective effects of TSA against AP via three classic mouse models. Methods. Mouse models of AP were established by caerulein, sodium taurocholate, and L-arginine, separately. Pancreatic and pulmonary histopathological characteristics and serum amylase and lipase levels were evaluated, and changes in oxidative stress injury and the ultrastructure of acinar cells were observed. The reactive oxygen species (ROS) inhibitor N-Acetylcysteine (NAC) and nuclear factor erythroid 2-related factor 2 (Nrf2) knockout mice were applied to clarify the protective mechanism of the drug. Results. In the caerulein-induced AP model, TSA administration reduced serum amylase and lipase levels and ameliorated the histopathological manifestations of AP in pancreatic tissue. Additionally, TSA appreciably decreased ROS release, protected the structures of mitochondria and the endoplasmic reticulum, and increased the protein expression of Nrf2 and heme oxygenase 1 of pancreatic tissue. In addition, the protective effects of TSA against AP were counteracted by blocking the oxidative stress (NAC administration and Nrf2 knockout in mice). Furthermore, we found that TSA protects pancreatic tissue from damage and pancreatitis-associated lung injury in two additional mouse models induced by sodium taurocholate and by L-arginine. Conclusion. Our data confirmed the protective effects of TSA against AP in mice by inhibiting oxidative stress via the Nrf2/ROS pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available