4.8 Review

Supramolecular Photochemistry as a Potential Synthetic Tool: Photocycloaddition

Journal

CHEMICAL REVIEWS
Volume 116, Issue 17, Pages 9914-9993

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.6b00040

Keywords

-

Funding

  1. National Science Foundation [CHE-1411458, CHE-1465075]
  2. Division Of Chemistry
  3. Direct For Mathematical & Physical Scien [1411458] Funding Source: National Science Foundation

Ask authors/readers for more resources

Photochemistry, bearing significant applications in natural and man-made events such as photosynthesis, vision, photolithography, photodynamic therapy, etc., is yet to become a common tool during the synthesis of small molecules in a laboratory. Among other rationale, the inability to influence photochemical reactions with temperature, solvent, additives, etc., dissuades chemists from employing light-initiated reactions as a routine synthetic tool. This review highlights how diverse, highly organized structures such as solvent-free crystals and water-soluble host guest assemblies can be employed to control and manipulate photoreactions and thereby serve as an efficient tool for chemists, including those interested in synthesis. The efficacy of the media in modifying the excited-state behavior of organic molecules is illustrated with photocycloaddition in general and [2 + 2] photocycloaddition in particular, reactions widely employed in the synthesis of complex natural products as well as highly constrained molecules, as exemplars. The reaction media, highly pertinent in the context of green sustainable chemistry, include solvent-free crystals and solids such as silica, clay, and zeolite and water-soluble hosts that can solubilize and preorganize hydrophobic reactants in Water. Since no Other reagent would be more sustainable than light and no other medium greener than water, we believe that the supramolecular photochemistry expounded here has a momentous role as a synthetic tool in the future,

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available