4.6 Article

Randomized learning and generalization of fair and private classifiers: From PAC-Bayes to stability and differential privacy

Journal

NEUROCOMPUTING
Volume 416, Issue -, Pages 231-243

Publisher

ELSEVIER
DOI: 10.1016/j.neucom.2019.12.137

Keywords

Algorithmic fairness; Privacy preserving data analysis; Generalization; Randomized classifier; PAC-Bayer; Algorithmic (distribution) stability; Randomized algorithm; Differential privacy

Ask authors/readers for more resources

We address the problem of randomized learning and generalization of fair and private classifiers. From one side we want to ensure that sensitive information does not unfairly influence the outcome of a classifier. From the other side we have to learn from data while preserving the privacy of individual observations. We initially face this issue in the PAC-Bayes framework presenting an approach which trades off and bounds the risk and the fairness of the randomized (Gibbs) classifier. Our new approach is able to handle several different state-of-the-art fairness measures. For this purpose, we further develop the idea that the PAC-Bayes prior can be defined based on the data-generating distribution without actually knowing it. In particular, we define a prior and a posterior which give more weight to functions with good generalization and fairness properties. Furthermore, we will show that this randomized classifier possesses interesting stability properties using the algorithmic distribution stability theory. Finally, we will show that the new posterior can be exploited to define a randomized accurate and fair algorithm. Differential privacy theory will allow us to derive that the latter algorithm has interesting privacy preserving properties ensuring our threefold goal of good generalization, fairness, and privacy of the final model. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available