4.8 Article

A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates

Journal

NATURE CHEMISTRY
Volume 12, Issue 4, Pages 381-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41557-020-0426-3

Keywords

-

Ask authors/readers for more resources

A programmable polymer library that responds to external and internal stimuli has been developed and used to fabricate a series of nanocarriers for drug release. The carriers respond to disease biomarkers, triggering self-immolative motifs and leading to the site-specific release of therapeutics both in vitro and in vivo. Stimuli-responsive biomaterials that contain logic gates hold great potential for detecting and responding to pathological markers as part of clinical therapies. However, a major barrier is the lack of a generalized system that can be used to easily assemble different ligand-responsive units to form programmable nanodevices for advanced biocomputation. Here we develop a programmable polymer library by including responsive units in building blocks with similar structure and reactivity. Using these polymers, we have developed a series of smart nanocarriers with hierarchical structures containing logic gates linked to self-immolative motifs. Designed with disease biomarkers as inputs, our logic devices showed site-specific release of multiple therapeutics (including kinase inhibitors, drugs and short interfering RNA) in vitro and in vivo. We expect that this 'plug and play' platform will be expanded towards smart biomaterial engineering for therapeutic delivery, precision medicine, tissue engineering and stem cell therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available