4.6 Article

An image segmentation approach based on fuzzy c-means and dynamic particle swarm optimization algorithm

Journal

MULTIMEDIA TOOLS AND APPLICATIONS
Volume 79, Issue 25-26, Pages 18839-18858

Publisher

SPRINGER
DOI: 10.1007/s11042-020-08699-8

Keywords

Image segmentation; Clustering; Fuzzy c-means; Dynamic particle swarm optimization; MRI image

Ask authors/readers for more resources

Image segmentation has considered an important step in image processing. Fuzzy c-means (FCM) is one of the commonly used clustering algorithms because of its simplicity and effectiveness. However, FCM has the disadvantages of sensitivity to initial values, falling easily into local optimal solution and sensitivity to noise. To tackle these disadvantages, many optimization-based fuzzy clustering methods have been proposed in the literature survey. Particle swarm optimization (PSO) has good global optimization capability and a hybrid of FCM and PSO have improved accuracy over tradition FCM clustering. In this paper, a new image segmentation method based on Dynamic Particle swarm optimization (DPSO) and FCM algorithm along with the noise reduction mechanism is proposed. DPSO has the advantages to change the inertia weight and learning parameters dynamically. It adopts the inertia weight according to the fitness value and learning parameters along with time. The proposed method combines DPSO with FCM, using the advantages of global optimization searching and parallel computing of DPSO to find a superior result of the FCM algorithm. Moreover, a noise reduction mechanism based on the surrounding pixels is used for enhancing the anti-noise ability. The synthetic image and Magnetic Resonance Imaging (MRI) have been used for testing the proposed method by introducing different types of noises and the results show that the proposed algorithm has better performance and less sensitive to noise.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available