4.7 Article

Overcoming Doxorubicin Resistance with Lipid-Polymer Hybrid Nanoparticles Photoreleasing Nitric Oxide

Journal

MOLECULAR PHARMACEUTICS
Volume 17, Issue 6, Pages 2135-2144

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.molpharmaceut.0c00290

Keywords

nanoparticles; nitric oxide; light; doxorubicin; multidrug resistance

Funding

  1. Italian Association for Cancer Research (AIRC) [IG-19859]
  2. Regione Campania-POR Campania FESR [B61G18000470007]

Ask authors/readers for more resources

We report on tailored lipid-polymer hybrid nanoparticles (NPs) delivering nitric oxide (NO) under the control of visible light as a tool for overcoming doxorubicin (DOX) resistance. The NPs consist of a polymeric core and a coating. They are appropriately designed to entrap DOX in the poly(lactide-co-glycolide) core and a NO photodonor (NOPD) in the phospholipid shell to avoid their mutual interaction both in the ground and excited states. The characteristic red fluorescence of DOX, useful for its tracking in cells, is well preserved upon incorporation within the NPs, even in the copresence of NOPD. The NP scaffold enhances the NO photoreleasing efficiency of the entrapped NOPD when compared with that of the free compound, and the copresence of DOX does not significantly affect such enhanced photochemical performance. Besides, the delivery of DOX and NOPD from NPs is also not mutually influenced. Experiments carried out in M14 DOX-resistant melanoma cells demonstrate that NO release from the multicargo NPs can be finely regulated by excitation with visible light, at a concentration level below the cytotoxic doses but sufficient enough to inhibit the efflux transporters mostly responsible for DOX cellular extrusion. This results in increased cellular retention of DOX with consequent enhancement of its antitumor activity. This approach, in principle, is not dependent on the type of chemotherapeutic used and may pave the way for new treatment modalities based on the photoregulated release of NO to overcome the multidrug resistance phenomenon and improve cancer chemotherapies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available