4.3 Article

Development of new biocompatible 3D printed graphene oxide-based scaffolds

Publisher

ELSEVIER
DOI: 10.1016/j.msec.2019.110595

Keywords

Polylactic acid; Graphene oxide; Nanocomposite; 3D printing; Biocompatibility

Funding

  1. Ministry of Science and Innovation (MOSTI) Malaysia
  2. Ministry of Higher Education (MOHE)
  3. Research Management Centre UTM

Ask authors/readers for more resources

The aim of this work was to develop a bioresorbable, biodegradable and biocompatible synthetic polymer with good mechanical properties for bone tissue engineering applications. Polylactic acid (PLA) scaffolds were generated by 3D printing using the fused deposition modelling method, and reinforced by incorporation of graphene oxide (GO). Morphological analysis by scanning electron microscopy indicated that the scaffold average pore size was between 400 and 500 mu m. Topography imaging revealed a rougher surface upon GO incorporation (Sa = 5.8 mu m for PLA scaffolds, and of 9.9 mu m for PLA scaffolds with 0.2% GO), and contact angle measurements showed a transition from a hydrophobic surface (pure PLA scaffolds) to a hydrophilic surface after GO incorporation. PLA thermomechanical properties were enhanced by GO incorporation, as shown by the 70 degrees C increase of the degradation peak (thermal gravimetric analysis). However, GO incorporation did not change significantly the melting point assessed by differential scanning calorimetry. Physicochemical analyses by X-ray diffraction and Raman spectroscopy confirmed the filler presence. Tensile testing demonstrated that the mechanical properties were improved upon GO incorporation (30% increase of the Young's modulus with 0.3% GO). Cell viability, attachment, proliferation and differentiation assays using MG-63 osteosarcoma cells showed that PLA/GO scaffolds were biocompatible and that they promoted cell proliferation and mineralization more efficiently than pure PLA scaffolds. In conclusion, this new 3D printed nanocomposite is a promising scaffold with adequate mechanical properties and cytocompatibility which may allow bone formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available