4.2 Article

NMR spectroscopy goes mobile: Using NMR as process analytical technology at the fume hood

Journal

MAGNETIC RESONANCE IN CHEMISTRY
Volume 58, Issue 12, Pages 1193-1202

Publisher

WILEY
DOI: 10.1002/mrc.5035

Keywords

benchtop NMR; Flow-IR; low-field NMR; process analytical technology; reaction monitoring

Ask authors/readers for more resources

Nuclear magnetic resonance (NMR) is potentially a very powerful process analytical technology (PAT) tool as it gives an atomic resolution picture of the reaction mixture without the need for chromatography. NMR is well suited for interrogating transient intermediates, providing kinetic information via NMR active nuclei, and most importantly provides universally quantitative information for all species in solution. This contrasts with commonly used PAT instruments, such as Raman or Flow-infrared (IR), which requires a separate calibration curve for every component of the reaction mixture. To date, the large footprint of high-field (>= 400 MHz) NMR spectrometers and the immobility of superconducting magnets, coupled with strict requirements for the architecture for the room it is to be installed, have been a major obstacle to using this technology right next to fume hoods where chemists perform synthetic work. Here, we describe the use of a small, lightweight 60 MHz Benchtop NMR system (Nanalysis Pro-60) located on a mobile platform, that was used to monitor both small and intermediate scale Grignard formation and coupling reactions. We also show how low field NMR can provide a deceptively simple yes/no answer (for a system that would otherwise require laborious off-line testing) in the enrichment of one component versus another in a kilogram scale distillation. Benchtop NMR was also used to derive molecule specific information from Flow-IR, a technology found in most manufacturing sites, and compare the ease at which the concentrations of the reaction mixtures can be derived by NMR versus IR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available