4.7 Article

Well-Defined Linear and Grafted Poly(2-isopropenyl-2-oxazoline)s Prepared via Copper-Mediated Reversible-Deactivation Radical Polymerization Methods

Journal

MACROMOLECULES
Volume 53, Issue 6, Pages 2077-2087

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.9b02662

Keywords

-

Funding

  1. Czech Science Foundation [19-04047S]
  2. Research AMP
  3. Innovation Operational Programme - ERDF [313021T081]
  4. Slovak Grant Agency VEGA [2/0129/19, 2/0124/18]

Ask authors/readers for more resources

2-Isopropenyl-2-oxazoline (IPOx) is an important double functional monomer with multiple potential applications. However, until now, the attempts at reversible-deactivation radical polymerization (RDRP) of IPOx via its double bond have met with little success, leading to low conversions and high-dispersity products. Here, we demonstrate that IPOx can be polymerized through aqueous Cu(0)-mediated RDRP in a controlled way using the 2-chloropropionitrile/CuCl(CuCl2)/TPMA initiation and catalytic system and 0.67 M NaCl as a solvent. It is shown that the polymerization is highly sensitive to the initiator concentration and the CuCl/CuCl2 ratio; however, with careful optimization of the polymerization parameters, low-dispersity products can be obtained at quantitative conversions. The synthesized poly(IPOx) polymers were subsequently transformed into different ATRP macroinitiators by the reaction of the pendant 2-oxazoline units with 2-bromoisobutyric or 2-chloropropionic acid under optimized reaction conditions. Styrene and methyl methacrylate were then grafted as model monomers from these macroinitiators under ATRP conditions, confirming that defined poly(IPOx)-based graft copolymers with controlled grafting density and molecular weights of the poly(IPOx) backbone and of the grafts are accessible by the presented method. This provides a straightforward route to a new class of 2-oxazoline-based materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available