4.6 Article

Green Carbon Material for Organic Contaminants Adsorption

Journal

LANGMUIR
Volume 36, Issue 12, Pages 3141-3148

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.9b03811

Keywords

-

Funding

  1. National Natural Science Foundation of China [21673162]
  2. China Postdoctoral Science Foundation [2019M652709]

Ask authors/readers for more resources

Eco-friendly and economical adsorbents are desirable for removing organic pollutants from the environment. Herein, a kind of green carbon material, electrolytic carbon (EC) prepared by the electrochemical conversion of greenhouse gas (CO2) in molten carbonate, is verified as an effective adsorbent for aniline and other small aromatic organic molecules. The EC consists of nanoparticles and nanoflakes, featuring the specific surface area of similar to 641 m(2)/g with an enriched micropore structure. It exhibits a large adsorption capacity (Q(max) > 114.1 mg/g) for aniline, especially in water with a lower contamination level. The adsorption conforms to the pseudo-second-order equation kinetically and the Freundlich model thermodynamically in the temperature range of 303-323 K. Moreover, it is found that the adsorption performance of the material can be further improved through reducing surface oxygen functional groups by a simple thermotreatment. Its adsorption capacity for aniline is enhanced by 1.7 times, demonstrating that the pi-pi dispersive interaction plays a primary role for the efficient adsorption. This adsorption mechanism is further confirmed by the excellent adsorption performance of the carbon materials for other analogue aromatic compounds (phenol, nitrobenzene). The super performance of the CO2-derived carbon adsorbents will be helpful for capturing CO2 as well as for removing organic pollutants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available