4.6 Article

Mechanical Coupling of Puller and Pusher Active Microswimmers Influences Motility

Journal

LANGMUIR
Volume 36, Issue 19, Pages 5435-5443

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.9b03665

Keywords

-

Funding

  1. Max Planck Institute for Intelligent Systems [M10335, M10338]
  2. Max Planck Society

Ask authors/readers for more resources

Active self-propelled colloidal populations induce time-dependent three-dimensional fluid flows, which alter the rheological (viscoelastic) properties of their fluidic media. Researchers have also studied passive colloids mixed with bacterial suspensions to understand the hydrodynamic coupling between active and passive colloids. With recent developments in biological cell-driven biohybrid microswimmers, different type biological microswimmer (e.g., bacteria and algae populations need to interact fluidically with each other in the same fluidic media, while such interactions have not been studied experimentally yet. Therefore, we report the swimming behavior of two opposite types of biological microswimmer (active colloid) populations: Chlamydomonas reinhardtii (C. reinhardtii) algae (puller-type microswimmers) population in coculture with Escherichia coli (E. coli bacteria (pusher-type microswimmers) population. We observed noticeable fluidic coupling deviations from the existing understanding of passive colloids mixed with bacterial suspensions previously studied in the literature. The fluidic coupling among puller- and pusher-type microswimmers led to nonequilibrium fluctuations in the fluid flow due to their opposite swimming patterns. Such coupling could be the main reason behind the shift in motility behaviors of these two opposite-type swimmer populations suspended in the same fluidic media.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available