4.7 Article

Phosphorus removal from aqueous solution by nanoscale zero valent iron in the presence of copper chloride

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 293, Issue -, Pages 225-231

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2016.02.052

Keywords

Phosphorus removal; Nanoscale zero valent iron; Phosphate recovery; Adsorption; Bimetallic iron

Funding

  1. Kyushu University, Japan

Ask authors/readers for more resources

This study investigates the adsorption of phosphorus by nanoscale zero valent iron (NZVI) in the presence of copper chloride. The NZVI used for the experiments was synthesized under optimum conditions using the chemical reduction method. The NZVI was characterized by transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller surface characterization and particle size analysis. Batch experiments were performed under different conditions to study the effect of parameters such as initial phosphorus concentration, copper chloride load, aerobic, anaerobic, pH and recovery. The results indicated that the presence of copper chloride effectively enhanced the adsorption capacity of phosphorus as it produced copper ferrite spinel on NZVI particles' surface which can adsorb phosphorus and increase its rate of adsorption, and also it stimulated NZVI corrosion. The adsorption capacity of phosphorus reached 50 mg PO43--P/g NZVI in the presence of copper chloride while NZVI without copper chloride reached the maximum adsorption capacity of 28 mg PO43--P/g NZVI. Phosphorus recovery batch experiments results showed that the maximum phosphorus recovery achieved at pH 12 was 60%. But the recovery of phosphorus increased by increasing the molarity of the alkaline medium (NaOH) solution used for recovery. A complete recovery of phosphorus was gained using 1 M NaOH solution. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available