4.7 Article

Insight into non-enzymatic browning of shelf-stable orange juice during storage: A fractionation and kinetic approach

Journal

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE
Volume 100, Issue 9, Pages 3765-3775

Publisher

WILEY
DOI: 10.1002/jsfa.10418

Keywords

non-enzymatic browning; orange juice; ascorbic acid degradation; soluble fractions; insoluble fractions; storage

Funding

  1. Interfaculty Council for Development Cooperation (IRO)
  2. Research Foundation Flanders (FWO) [12K2216N, G0C3718N, G0A7615N]

Ask authors/readers for more resources

BACKGROUND Non-enzymatic browning (NEB) is the main quality defect in shelf-stable orange juice and other fruit juices during storage. Previous studies on NEB focused solely on the soluble fraction of orange juice, regardless of the fact that both soluble and insoluble fractions turn brown during extended storage. Clear evidence of the relative contribution of both fractions to NEB is currently lacking in the literature. This study investigated the contribution of the soluble and insoluble fractions of orange juice, which were obtained by centrifugation and ethanol precipitation, to NEB during storage. Changes in different NEB-related attributes, such as ascorbic acid (AA) degradation, and the browning index (BI), were quantified and kinetically modeled. RESULTS Evaluation of color during storage showed that the orange juice and the soluble compound-containing fractions turned brown whereas the insoluble fractions did not. The soluble compound-containing fractions showed exactly the same browning behavior with storage as the plain orange juice. Based on the kinetic parameters obtained, the degradation of AA, the hydrolysis of sucrose, the increase in the glucose and fructose content, and the formation of furfural and 5-hydroxymethylfurfural during storage were similar for the plain orange juice and the soluble compound-containing fractions. CONCLUSION This work provided evidence that the soluble fraction of orange juice plays the major role in NEB, unlike the insoluble fraction, which seems to make no contribution. Results from this work also demonstrate the potential use of the soluble fraction as an orange-juice-based model system of reduced complexity that can be used for the further investigation of NEB processes. (c) 2020 Society of Chemical Industry

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available