4.7 Article

On the potential of recurrent neural networks for modeling path dependent plasticity

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2020.103972

Keywords

Recurrent neural network; Fully connected neural network; Gated recurrent unit; Plasticity; Yld2000-2d; HAH

Funding

  1. MIT Industrial Fracture Consortium

Ask authors/readers for more resources

The mathematical description of elastoplasticity is a highly complex problem due to the possible change from elastic to elasto-plastic behavior (and vice-versa) as a function of the loading path. Advanced physics-based plasticity models usually feature numerous internal variables (often of tensorial nature) along with a set of evolution equations and complementary conditions. In the present work, an attempt is made to come up with a machine-learning based model that can replicate the predictions anisotropic Yld2000-2d model with homogeneous anisotropic hardening (HAH). For this, a series of modeling problems of increasing complexity is formulated and sequentially addressed using neural network models. It is demonstrated that basic fully-connected neural network models can capture the characteristic non-linearities in the uniaxial stress-strain response such as the Bauschinger effect, permanent softening or latent hardening. A neural network with gated recurrent units (GRUs) and fully-connected layer is proposed for the modeling of plane stress plasticity for arbitrary loading paths. After training and testing the model through comparison with the Yld200 0-2d/HAH model, the recurrent neural network model is also used to model the multi-axial stress-strain response of a two-dimensional foam. Here, the comparison with the results from unit cell simulations provided another validation of the proposed data-driven modeling approach. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available