4.6 Article

Prediction of Reversible Lithium Plating with a Pseudo-3D Lithium-Ion Battery Model

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 167, Issue 10, Pages -

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1945-7111/ab95c8

Keywords

Batteries - Li-ion; Energy Storage; Theory and Modelling; Thin film growth; Electrochemical Engineering; Electrode Kinetics; Thermodynamics

Funding

  1. Deutsche Forschungsgemeinschaft (German Research Foundation, DFG) [281041241/GRK 2218]

Ask authors/readers for more resources

Fast charging of lithium-ion batteries remains one of the most delicate challenges for the automotive industry, being seriously affected by the formation of lithium metal in the negative electrode. Here we present a physicochemical pseudo-3D model that explicitly includes the plating reaction as side reaction running in parallel to the main intercalation reaction. The thermodynamics of the plating reaction are modeled depending on temperature and ion concentration, which differs from the often-used assumption of a constant plating condition of 0 V anode potential. The reaction kinetics are described with an Arrhenius-type rate law parameterized from an extensive literature research. Re-intercalation of plated lithium was modeled to take place either via reverse plating (solution-mediated) or via an explicit interfacial reaction (surface-mediated). At low temperatures not only the main processes (intercalation and solid-state diffusion) become slow, but also the plating reaction itself becomes slower. Using this model, we are able to predict typical macroscopic experimental observables that are indicative of plating, that is, a voltage plateau during discharge and a voltage drop upon temperature increase. A spatiotemporal analysis of the internal cell states allows a quantitative insight into the competition between intercalation and plating. Finally, we calculate operation maps over a wide range of C-rates and temperatures that allow to assess plating propensity as function of operating condition. (C) 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available