4.5 Article

Ultraviolet Photodissociation of Tryptic Peptide Backbones at 213 nm

Journal

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jasms.0c00106

Keywords

ultraviolet photodissociation; backbone fragmentation; tryptic peptides; collision-induced dissociation spectrum; fragmentation behavior; precursors

Funding

  1. Wellcome Trust [103139, 108504, 203149]
  2. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [329673113, 426290502]

Ask authors/readers for more resources

We analyzed the backbone fragmentation behavior of tryptic peptides of a four-protein mixture and of E. coli lysate subjected to ultraviolet photodissociation (UVPD) at 213 nm on a commercially available UVPD-equipped tribrid mass spectrometer. We obtained 15 178 unique high-confidence peptide UVPD spectrum matches by recording a reference beam-type collision-induced dissociation (HCD) spectrum of each precursor, ensuring that our investigation includes a broad selection of peptides, including those that fragmented poorly by UVPD. Type a, b, and y ions were most prominent in UVPD spectra, and median sequence coverage ranged from 5.8% (at 5 ms laser excitation time) to 45.0% (at 100 ms). Overall, the sequence fragment intensity remained relatively low (median: 0.4% (5 ms) to 16.8% (100 ms) of total intensity), and the remaining precursor intensity, high. The sequence coverage and sequence fragment intensity ratio correlated with the precursor charge density, suggesting that UVPD at 213 nm may suffer from newly formed fragments sticking together due to noncovalent interactions. The UVPD fragmentation efficiency therefore might benefit from supplemental activation, as was shown for ETD. Aromatic amino acids, most prominently tryptophan, facilitated UVPD. This points to aromatic tags as possible enhancers of UVPD. Data are available via ProteomeXchange with identifier PXD018176 and on spectrumviewer.org/db/UVPD-213nmtrypPep.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available