4.7 Article

Adsorption of U(VI) by multilayer titanate nanotubes: Effects of inorganic cations, carbonate and natural organic matter

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 286, Issue -, Pages 427-435

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2015.10.094

Keywords

Titanate nanotube; Uranium; Radionuclide; Radioactive chemical; Ion exchange

Funding

  1. National Natural Science Foundation of China [41230638]
  2. Auburn University IGP Award

Ask authors/readers for more resources

Titanate nanotubes (TNTs) were synthesized through a hydrothermal method and tested to remove U(VI) from water. TEM characterizations indicate that the multilayer nanotubes have an inner and outer diameter of 4.5 and 9 nm, respectively. The material exhibited excellent adsorption capacity (Langmuir = 333 mg g(-1)) for U(VI) and rapid adsorption kinetics. XRD, XPS and Raman analyses of TNTs before and after U(VI) uptake revealed that the high capacity is attributed to the abundant -ONa functional groups located in the interlayers of TNTs and ion exchange between Na+ and cationic uranyl species is the key mechanism. The chemical formula of TNTs was determined to be Na0.92H1.08Ti3O7.1.18H(2)O, which turns to (UO2)(0.58)(OH)(0.70)Na0.16H1.38Ti3O7.1.18H(2)O upon U(VI) adsorption. The optimal pH for U(VI) ranges from 4 to 6. The presence of Ca2+ and CO32- at elevated concentrations may inhibit U(VI) due to competitive adsorption and formation of anionic and electro-neutral complexes. However, humic acid (HA) promoted U(VI) adsorption because adsorbed HA facilitated binding with U(VI). Moreover, HA can greatly alleviate the competitive effects of Ca2+ and carbonate on adsorption. Spent TNTs can be efficiently regenerated through a sequential acid-base treatment process using dilute HNO3 and NaOH solution. TNTs appear promising for removal and recovery of U(VI). (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available