4.7 Article

Novel poly(imide dioxime) sorbents: Development and testing for enhanced extraction of uranium from natural seawater

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 298, Issue -, Pages 125-135

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2016.04.013

Keywords

Polymer; Grafting; Amidoxime; Imide dioxime; Uranium adsorption; Seawater

Funding

  1. US Department of Energy, Office of Nuclear Energy
  2. US Department of Energy [DE-AC05-000R22725]
  3. Department of Energy

Ask authors/readers for more resources

A new series of amidoxime-based polymer adsorbents were synthesized at the Oak Ridge National Laboratory (ORNL) by electron beam induced grafting of acrylonitrile and itaconic acid onto polyethylene fiber. Hydroxylamine derivatives of poly(acrylonitrile) (PAN) moiety are demonstrated to possess two kinds of functional groups: open-chain amidoxime and cyclic imide dioxime. The open-chain amidoxime is shown to convert to imide dioxime on heat treatment in the presence of an aprotic solvent, like dimethylsulfoxide (DMSO). The formation of amidoxime and imide dioxime was confirmed by C-13 CP-MAS spectra. The adsorbents were evaluated for uranium adsorption efficiency at ORNL with simulated seawater spiked with 8 ppm uranium and 5 gallon seawater in a batch reactor, and in flow-through columns with natural seawater at the Marine Science Laboratory (MSL) of Pacific Northwest National Laboratory (PNNL) at Sequim Bay, WA. The DMSO-heat-treated sorbents adsorbed uranium as high as 4.48 g-U/kg-ads. from seawater. Experimental evidence is presented that the poly(imide dioxime) is primarily responsible for enhanced uranium adsorption capacity from natural seawater. The conjugated system in the imide dioxime ligand possesses increased electron donation ability, which is believed to significantly enhance the uranyl coordination in seawater. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available