4.8 Article

From Mechanical Effects to Mechanochemistry: Softening and Depression of the Melting Point of Deformed Plastic Crystals

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 142, Issue 25, Pages 11219-11231

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.0c03990

Keywords

-

Funding

  1. New York University Abu Dhabi

Ask authors/readers for more resources

The melting of any pure crystalline material at constant pressure is one of its most fundamental properties, and it has been used to identify organic compounds or to verify their chemical or phase purity since the early times of chemistry. Here, we report that a mechanical deformation of plastic organic single crystals such as bending results in a small yet significant decrease in their melting point of about 0.3-0.4 K. The bent section of the crystal was found to be mechanically softer relative to the straight sections, and the softening temperature preceding the melting was also lower on the convex (outer) side of the bent crystal. Melting of the bent crystal starts at the kink and often appears as splitting of the respective endothermic peak in its thermal (DSC) fingerprint, while unilateral compression of the crystal results in multiple peaks. These thermomechanical effects become more pronounced with heavier mechanical damage due to an increased concentration of defects and ultimately result in a large temperature spread of the associated phase change in addition to melting-point depression in deformed or damaged crystals relative to their pristine counterparts. Within a broader context, the results show that mechanical treatment during sample preparation has a profound effect on the melting of a pure substance, and this could be critically important where the exact melting point is used as a means for polymorph identification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available