4.7 Article

Hydrothermal conversion of scrap tire to liquid fuel

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 285, Issue -, Pages 157-163

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2015.10.001

Keywords

Hydrothermal liquefaction; Scrap tire; Sub- and supercritical water; Liquid fuel

Funding

  1. Fundamental Research Funds for the Universities of Henan Province [NSFRF140205]
  2. Program for New Century Excellent Talents in University - China [NCET-13-775]

Ask authors/readers for more resources

The hydrothermal liquefaction of scrap tires (ST) using a stainless-steel batch reactor is examined in this study. The effects of reaction temperature (from 200 to 430 degrees C), corresponding pressure (from 0 to 28 MPa), time (from 20 to 120 min), H2O/ST mass ratio (from 0/3 to 12/3), and atmosphere (air, CO2, CO, H-2, and N-2) on the yields of product fractions (liquid products, gas, and char) and the properties of the liquid products were examined. Of the variables examined, temperature was the most influential factor affecting the yield and quality of the liquid products. Under optimal conditions, the highest liquid product yield of 52.73 wt.% was achieved. Thermal decomposition of the ST begins at approximately 120 degrees C and finishes at approximately 500 degrees C. The addition of water made the complete conversion of ST milder than that its direct pyrolysis (without water). During hydrothermal liquefaction, water was partly incorporated into the liquid products. The liquid products, which are highly viscous at room temperature and flow with difficulty, had higher heating values of approximately 44.20-45.09 MJ/kg. The liquid products mainly consisted of unsaturated hydrocarbons and aromatics, and approximately 60 wt.% of the chemical energy in the ST was retained in the liquid products in these conditions. The gaseous products were mainly CO2, H-2, and CH4. This study suggests that ST can be hydrothermally converted into a high quality liquid fuel. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available