4.7 Article

Application of extremum response surface method-based improved substructure component modal synthesis in mistuned turbine bladed disk

Journal

JOURNAL OF SOUND AND VIBRATION
Volume 472, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2020.115210

Keywords

Improved substructural component modal synthesis; Extremum response surface method; Mistuned turbine bladed disk; Vibration response; Probabilistic analysis

Funding

  1. National Key Research and Development Plan Project [2017YFB1301300]
  2. National Natural Science Foundation of China [11772011, 51605016]

Ask authors/readers for more resources

To improve the computational efficiency of vibration characteristics and reliability analysis for a detailed numerical model of the mistuned turbine bladed disk, a new methodology called extremum response surface method-based improved substructural component modal synthesis (ERSM-ISCMS) is proposed by combining the ISCMS and ERSM. First, the degrees of freedom of the detailed finite element model for the numerical mistuned turbine bladed disk are decreased by ISCMS, which is called as reduced-order model. Compared with high fidelity finite element model, the time saving ratio and the computational accuracy of the first 40 order frequencies are, respectively, 36.37% and 99.99% similar to 99.86% obtained by ISCMS under the same working environment, which can satisfy the engineering requirements. Then, the ERSM is applied to analyze the dynamic probability of the maximum vibration response for the numerical mistuned turbine bladed disk. The investigation indicates that the computational efficiency of ERSM is higher 38.92% than that of traditional RSM in the same computer and the same reduced-order model. Thus, the ERSM-ISCMS is a more effective method to investigate dynamic probabilistic analysis of the mistuned turbine bladed disk, it benefits for the complex structures and develops the theory method for the mechanical reliability design. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available