4.5 Article

Magnetoelastic properties and behaviour of 4C pyrrhotite, Fe7S8, through the Besnus transition

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 32, Issue 40, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1361-648X/ab8fd3

Keywords

pyrrhotite; magnetoelastic coupling; Besnus

Funding

  1. Leverhulme Foundation [RPG-2016-298]
  2. Natural Environment Research Council
  3. Engineering and Physical Sciences Research Council of Great Britain [NE/B505738/1, NE/F17081/1, EP/I036079/1]
  4. EPSRC Strategic Equipment Grant [EP1M00052411]
  5. EPSRC [EP/I036079/1, EP/M000524/1] Funding Source: UKRI

Ask authors/readers for more resources

Pyrrhotite, Fe7S8, is a commonly occurring carrier of magnetic remanence and has a low temperature transition, the Besnus transition, involving a change in spin state. Variations of the thermodynamic, magnetic and elastic properties through this transition at similar to 33 K in a natural sample of 4C pyrrhotite have been tested against a group theoretical model for coupling between order parameters relating to Fe/vacancy ordering (irrep U-1 (1/2,0,1/4)) and magnetic ordering (irreps m Gamma(+)(4) and m Gamma(+)(5)). Magnetoelastic coupling is weak but the pre-existing microstructure of ferroelastic and magnetic domains, that develop as a consequence of Fe/vacancy and ferrimagnetic ordering during slow cooling in nature (P6(3)/mmc -> C2'/c'), causes subtle changes in the low temperature transition (C2'/c' -> P (1) over bar). The Besnus transition involves a rotation of magnetic moments out of the a-c plane of the monoclinic structure, but it appears that the transition temperature might vary locally according to whether it is taking place within the pre-existing domain walls or in the domains that they separate. Evidence of metamagnetic transitions suggests that the magnetic field-temperature phase diagram will display some interesting diversity. Low temperature magnetic transitions in minerals of importance to the palaeomagnetism community have been used to identify the presence of magnetite and haematite in rocks and the Besnus transition is diagnostic of the existence of pyrrhotite, Fe7S8.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available