4.5 Article

Nonmonotonic Influence of Size of Quaternary Ammonium Countercations on Micromorphology, Polarization, and Electroresponse of Anionic Poly(ionic liquid)s

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 124, Issue 14, Pages 2920-2929

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.9b11702

Keywords

-

Funding

  1. National Natural Science Foundation of China [51872243, 51572225]

Ask authors/readers for more resources

The size influence of quaternary ammonium countercations in poly[4-styrenesulfonyl(trifluoromethylsulfonyl)imide][tetraalkylammonium] (P[STFSI][Nnnnn], n = 1, 2, and 3) poly(ionic liquid)s on dielectric polarization and the stimuli-responsive electrorheological effect is investigated by dielectric spectroscopy and rheology, and the microstructure-level understanding behind the influence is analyzed by Raman and X-ray scattering spectra. The size influence of quaternary ammonium cations is found to be nonmonotonic. The largest electrorheological effect accompanied by best polarization properties is demonstrated in P[STFSI][N2222]. Raman spectra and activation energy measurements demonstrate that the nonmonotonic influence originates from the fact that, compared to small N1111(+) and large N3333(+), intermediate N2222(+) as countercations can contribute a higher mobile ion number and lower activation energy barrier of ion dissociation and motion. But the experimental values of activation energy are not consistent with theoretically calculated values by considering the ion pair electrostatic potential and elastic force contribution of the matrix. By X-ray scattering and diffraction characterizations, it is clarified that the nonmonotonic influence and the inconsistency of activation energy originate from the size influence of Nnnnn(+) on the micromorphology of P[STFSI][Nnnnn]. Compared to the semicrystalline structure of P[STFSI][N1111] and the ionic aggregation structure of P[STFSI][N3333], the relatively uniform amorphous structure of P[STFSI][N2222] may be responsible for its lower activation energy barrier of ion motion. This study further provides insights into the design and preparation of future poly(ionic liquid)-based electrorheological materials by considering not only molecular structure but also micromorphology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available