4.6 Article Proceedings Paper

Coarse-Grained Force Field Calibration Based on Multiobjective Bayesian Optimization to Simulate Water Diffusion in Poly-ε-caprolactone

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 124, Issue 24, Pages 5042-5052

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpca.0c01939

Keywords

-

Funding

  1. National Science Foundation [IGERT-1258425, CMMI-1663227]

Ask authors/readers for more resources

Molecular dynamics at the atomistic scale is increasingly being used to predict material properties and speed up the material design and development process. However, the accuracy of molecular dynamics predictions is sensitively dependent on the force fields. In the traditional force field calibration process, a specific property, predicted by the model, is compared with the experimental observation and the force field parameters are adjusted to minimize the difference. This leads to the issue that the calibrated force fields are not generic and robust enough to predict different properties. Here, a new calibration method based on multiobjective Bayesian optimization is developed to speed up the development of molecular dynamics force fields that are capable of predicting multiple properties accurately. This is achieved by reducing the number of simulation runs to generate the Pareto front with an efficient sequential sampling strategy. The methodology is demonstrated by generating a new coarse-grained force field for polycaprolactone, where the force field can predict the mechanical properties and water diffusion in the polymer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available