4.7 Article

Exploiting redox activity in metal-organic frameworks: concepts, trends and perspectives

Journal

CHEMICAL COMMUNICATIONS
Volume 52, Issue 58, Pages 8957-8971

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6cc00805d

Keywords

-

Funding

  1. ChemComm Emerging Investigator Award
  2. Australian Research Council

Ask authors/readers for more resources

Of the many thousands of new metal-organic frameworks (MOFs) that are now discovered each year, many possess potential redox activity arising from the constituent metal ions and/or organic ligands, or the guest molecules located within their porous structures. Those redox states that can be accessed via postsynthetic redox modulation often possess distinct physical properties; if harnessed, these provide a basis for applications including microporous conductors, electrocatalysts, energy storage devices and electrochemical sensors, amongst others. This feature article highlights the latest developments in experimental, theoretical and computational concepts relevant to redox-active MOFs, including new solid state electrochemical and spectroelectrochemical techniques that have great utility in this field. A particular emphasis is on current and emerging trends at the fundamental level which underscore the importance of this promising class of electroactive materials for a wide range of technologically- and industrially-relevant applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available