4.5 Article

Intratumor injection of CCL21-coupled vault nanoparticles is associated with reduction in tumor volume in an in vivo model of glioma

Journal

JOURNAL OF NEURO-ONCOLOGY
Volume 147, Issue 3, Pages 599-605

Publisher

SPRINGER
DOI: 10.1007/s11060-020-03479-8

Keywords

Glioblastoma; Nanoparticles; Immunotherapy; Cancer; CCL21; Vaults

Ask authors/readers for more resources

Purpose Glioblastoma (GBM) is the most common and malignant primary adult brain tumor. Current care includes surgical resection, radiation, and chemotherapy. Recent clinical trials for GBM have demonstrated extended survival using interventions such as tumor vaccines or tumor-treating fields. However, prognosis generally remains poor, with expected survival of 20 months after randomization. Chemokine-based immunotherapy utilizing CCL21 locally recruits lymphocytes and dendritic cells to enhance host antitumor response. Here, we report a preliminary study utilizing CPZ-vault nanoparticles as a vehicle to package, protect, and steadily deliver therapy to optimize CCL21 therapy in a murine flank model of GBM. Methods GL261 cells were subcutaneously injected into the left flank of eight-week-old female C57BL/6 mice. Mice were treated with intratumoral injections of either: (1) CCL21-packaged vault nanoparticles (CPZ-CCL21), (2) free recombinant CCL21 chemokine empty vault nanoparticles, (3) empty vault nanoparticles, or 4) PBS. Results The results of this study showed that CCL21-packaged vault nanoparticle injections can decrease the tumor volume in vivo. Additionally, this study showed mice injected with CCL21-packaged vault nanoparticle had the smallest average tumor volume and remained the only treatment group with a negative percent change in tumor volume. Conclusions This preliminary study establishes vault nanoparticles as a feasible vehicle to increase drug delivery and immune response in a flank murine model of GBM. Future animal studies involving an intracranial orthotopic tumor model are required to fully evaluate the potential for CCL21-packaged vault nanoparticles as a strategy to bypass the blood brain barrier, enhance intracranial immune activity, and improve intracranial tumor control and survival.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available