4.5 Article

Exome sequencing analysis identifies frequent oligogenic involvement and FLNB variants in adolescent idiopathic scoliosis

Journal

JOURNAL OF MEDICAL GENETICS
Volume 57, Issue 6, Pages 405-413

Publisher

BMJ PUBLISHING GROUP
DOI: 10.1136/jmedgenet-2019-106411

Keywords

adolescent idiopathic scoliosis; FLNB; oligogenic; exome sequencing

Funding

  1. National Natural Science Foundation of China [81772305]
  2. Shanghai Sailing Program [19YF1447800]

Ask authors/readers for more resources

Background Adolescent idiopathic scoliosis (AIS) is a genetically heterogeneous disease characterised by three-dimensional deformity of the spine in the absence of a congenital spinal anomaly or neurological musculoskeletal disorder. The clinical variability and incomplete penetrance of some genes linked with AIS indicate that this disease constitutes an oligogenic trait. Objective We aimed to explore the oligogenic nature of this disease and identify novel AIS genes. Methods We analysed rare damaging variants within AIS-associated genes by using exome sequencing in 40 AIS trios and 183 sporadic patients. Results Multiple variants within AIS-associated genes were identified in eight AIS trios, and five individuals harboured rare damaging variants in the FLNB gene. The patients showed more frequent oligogenicity than the controls. In the gene-based burden test, the top signal resided in FLNB. In functional studies, we found that the AIS-associated FLNB variants altered the protein's conformation and subcellular localisation and its interaction with other proteins (TTC26 and OFD1) involved in AIS. The most compelling evidence of an oligogenic basis was that the number of rare damaging variants was recognised as an independent prognostic factor for curve progression in Cox regression analysis. Conclusion Our data indicate that AIS is an oligogenic disease and identify FLNB as a susceptibility gene for AIS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available