4.7 Article

Ring expansion reactions of anti-aromatic boroles: a promising synthetic avenue to unsaturated boracycles

Journal

CHEMICAL COMMUNICATIONS
Volume 52, Issue 65, Pages 9985-9991

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6cc04330e

Keywords

-

Funding

  1. Welch Foundation [AA-1846]
  2. Baylor University

Ask authors/readers for more resources

Conjugated boron heterocycles have emerged as attractive synthetic targets due to their potential in medicinal chemistry and as electronic materials. However, the development of unsaturated boracycles has been hampered by difficulties in their preparation. Recently, a new synthetic avenue to access these species has been developed that takes advantage of the high reactivity of boroles. These five-membered anti-aromatic heterocycles can react with substrates to furnish ring expansion products via the insertion of one, two, or three atoms into the boracyclic ring. The ring expansion can occur via two pathways, the first exploits the activated diene moiety of the heterocycle in Diels-Alder chemistry with the resulting bicyclic species undergoing further rearrangements. The second reaction pathway is initiated by the coordination of the Lewis basic site of a substrate to the highly Lewis acidic boron center rendering the endocyclic B-C bond of the borole nucleophilic, inducing the formation of larger boracycles via attack at the electrophilic site of the substrate. This review summarizes the current state of this chemistry and details the mechanisms leading to the products. The methodologies described herein could very well be extended to other substrates, as well as applied to other anti-aromatic heterocycles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available