4.4 Article

A Control Scheme for Physical Human-Robot Interaction Coupled with an Environment of Unknown Stiffness

Journal

JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS
Volume 100, Issue 1, Pages 165-182

Publisher

SPRINGER
DOI: 10.1007/s10846-020-01176-2

Keywords

Physical human-robot interaction (pHRI); Variable admittance control; Collaborative manipulator

Ask authors/readers for more resources

Variable admittance control is commonly used for a collaborative robot to achieve the compliant or accurate cooperation according to human's intention. However, existing research seldom investigates such a human-robot collaboration coupled with an extra environment with unknown stiffness. If the end-effector that is guided by a human with various intended motion contacts the unknown environment, the interaction might become unstable. Additionally, current research for this physical human-robot-environment interaction use two force sensors to address the issue, and hence the cost of the robot is likely to increase and it reduces the flexibility to many applications. Therefore, in this paper, we address the issue of physical human-robot interaction coupled with an extra environment whose stiffness is unknown. To achieve this, the condition of robot admittance is rigorously proved in accordance with different human intended motion and environmental stiffness. Moreover, a variable admittance control scheme is proposed based on human intention, environmental force and environment stiffness using the combination of a force sensor and a force observer. Simulation and experiments are conducted to demonstrate the effectiveness of the proposed control scheme.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available