4.6 Article

LC-IMPACT: A regionalized life cycle damage assessment method

Journal

JOURNAL OF INDUSTRIAL ECOLOGY
Volume 24, Issue 6, Pages 1201-1219

Publisher

WILEY
DOI: 10.1111/jiec.13018

Keywords

disability adjusted life years; global extinction risk; industrial ecology; kilogram ore extracted; potentially disappeared fraction of species; spatial differentiation

Ask authors/readers for more resources

Life cycle impact assessment (LCIA) is a lively field of research, and data and models are continuously improved in terms of impact pathways covered, reliability, and spatial detail. However, many of these advancements are scattered throughout the scientific literature, making it difficult for practitioners to apply the new models. Here, we present the LC-IMPACT method that provides characterization factors at the damage level for 11 impact categories related to three areas of protection (human health, ecosystem quality, natural resources). Human health damage is quantified as disability adjusted life years, damage to ecosystem quality as global species extinction equivalents (based on potentially disappeared fraction of species), and damage to mineral resources as kilogram of extra ore extracted. Seven of the impact categories include spatial differentiation at various levels of spatial scale. The influence of value choices related to the time horizon and the level of scientific evidence of the impacts considered is quantified with four distinct sets of characterization factors. We demonstrate the applicability of the proposed method with an illustrative life cycle assessment example of different fuel options in Europe (petrol or biofuel). Differences between generic and regionalized impacts vary up to two orders of magnitude for some of the selected impact categories, highlighting the importance of spatial detail in LCIA. This article met the requirements for a gold - gold JIE data openness badge described at .

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available