4.7 Article

Delayed ignition and propulsion of catalytic microrockets based on fuel-induced chemical dealloying of the inner alloy layer

Journal

CHEMICAL COMMUNICATIONS
Volume 52, Issue 79, Pages 11838-11841

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6cc06632a

Keywords

-

Funding

  1. Defense Threat Reduction Agency-Joint Science and Technology Office for Chemical and Biological Defense [HDTRA1-14-1-0064]
  2. Spanish Ministry of Economy and Competitiveness [EEBB-I-16-11442]
  3. UC MEXUS-CONACYT
  4. National Science Foundation [ECCS-1542148]

Ask authors/readers for more resources

The delayed ignition and propulsion of catalytic tubular microrockets based on fuel-induced chemical dealloying of an inner alloy layer is demonstrated. Such timed delay motor activation process relies on the preferential gradual corrosion of Cu from the inner Pt-Cu alloy layer by the peroxide fuel. The dealloying process exposes the catalytically active Pt surface to the chemical fuel, thus igniting the microrockets propulsion autonomously without external stimuli. The delayed motor activation relies solely on the intrinsic material properties of the micromotor and the surrounding solution. The motor activation time can thus be tailored by controlling the composition of the Cu-Pt alloy layer and the surrounding media, including the fuel and NaCl concentrations and local pH. Speed acceleration in a given fuel solution is also demonstrated and reflects the continuous exposure of the Pt surface. The versatile blastoff'' control of these chemical microrockets holds considerable promise for designing self-regulated chemically-powered nanomachines with a built-in'' activation mechanism for diverse tasks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available