4.7 Article

Performance assessment of 2D Zero-Inertia and Shallow Water models for simulating rainfall-runoff processes

Journal

JOURNAL OF HYDROLOGY
Volume 584, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhydrol.2020.124663

Keywords

Surface runoff; Runoff generation; Pluvial flooding; Zero-inertia equation; Shallow-water equations; Diffusive-wave equation

Funding

  1. Spanish Ministry of Economy (MINECO) [DI-14-06987]

Ask authors/readers for more resources

Rainfall-runoff simulations are increasingly being performed with physically-based and spatially distributed solvers. The current computational and numerical technology enables the use of full shallow water equations solvers to be applied for these type of flow problems. Nonetheless, Zero-Inertia (diffusive wave) solvers have been historically favoured due to their conceptual and mathematical simplicity in comparison to shallow water solvers, with the working assumption that the simplifications introduced by Zero-Inertia will have some assumable impact on accuracy but will also allow for computational efficiency. Since both types of solvers have been primarily developed, benchmarked and compared to each other for fluvial and floodplain simulations, it is relevant to assess t-he relative performance for rainfall-runoff problems. In this work, both solvers are applied to a set of six well known test cases with reference solutions. The performance of the solvers is assessed in terms of global signatures such as hydrographs and flooded areas, but also in terms of spatial distributions of depth and velocity, as well as computational cost. Furthermore, the comparisons are performed across different spatial resolutions. The results show that for rainfall-runoff problems explicit, finite volumes solvers for both equations provide a similar accuracy, but the shallow water solver requires less computational time. The Zero-Inertia solver was found to be less sensitive to mesh refining than the full shallow water solver.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available