4.5 Article

Disrupted functional connectivity between sub-regions in the sensorimotor areas and cortex in migraine without aura

Journal

JOURNAL OF HEADACHE AND PAIN
Volume 21, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s10194-020-01118-1

Keywords

Migraine; Sensorimotor; Sub-region; Resting state; Functional MRI; Functional connectivity

Funding

  1. National Natural Science Foundation of China [81571658, 81271302]
  2. Shanghai Municipal Science and Technology Commission [14JC1404300]
  3. Prevention and Control of Chronic Diseases Project of Shanghai Hospital Development Center [SHDC12015310]
  4. SHSMU-ION Research Center for Brain Disorders [2015NKX006]
  5. Shanghai Municipal Education Commission-Gaofeng Clinical Medicine [20161422]
  6. Shanghai Jiao Tong University School of Medicine [DLY201614]
  7. Biomedicine Key Program from Shanghai Municipal Science and Technology Commission [16411953100]

Ask authors/readers for more resources

Background Migraine is a severe and disabling brain disorder, and the exact neurological mechanisms remain unclear. Migraineurs have altered pain perception, and headache attacks disrupt their sensory information processing and sensorimotor integration. The altered functional connectivity of sub-regions of sensorimotor brain areas with other brain cortex associated with migraine needs further investigation. Methods Forty-eight migraineurs without aura during the interictal phase and 48 age- and sex-matched healthy controls underwent resting-state functional magnetic resonance imaging scans. We utilized seed-based functional connectivity analysis to investigate whether patients exhibited abnormal functional connectivity between sub-regions of sensorimotor brain areas and cortex regions. Results We found that patients with migraineurs without aura exhibited disrupted functional connectivities between the sensorimotor areas and the visual cortex, temporal cortex, posterior parietal lobule, prefrontal areas, precuneus, cingulate gyrus, sensorimotor areas proper and cerebellum areas compared with healthy controls. In addition, the clinical data of the patients, such as disease duration, pain intensity and HIT-6 score, were negatively correlated with these impaired functional connectivities. Conclusion In patients with migraineurs without aura, the functional connectivities between the sensorimotor brain areas and other brain regions was reduced. These disrupted functional connectivities might contribute to abnormalities in visual processing, multisensory integration, nociception processing, spatial attention and intention and dysfunction in cognitive evaluation and modulation of pain. Recurrent headache attacks might lead to the disrupted network between primary motor cortex and temporal regions and between primary somatosensory cortex and temporal regions. Pain sensitivity and patient quality of life are closely tied to the abnormal functional connectivity between sensorimotor regions and other brain areas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available