4.7 Article

Drosophila P75 safeguards oogenesis by preventing H3K9me2 spreading

Journal

JOURNAL OF GENETICS AND GENOMICS
Volume 47, Issue 4, Pages 187-199

Publisher

SCIENCE PRESS
DOI: 10.1016/j.jgg.2020.02.008

Keywords

Drosophila; LEDGF/p75; Jil-1; H3K9me2

Funding

  1. NIH [DP5OD021355]
  2. National Natural Science Foundation of China [91940302, 31870741]

Ask authors/readers for more resources

Serving as a host factor for human immunodeficiency virus (HIV) integration, LEDGF/p75 has been under extensive study as a potential target for therapy. However, as a highly conserved protein, its physiological function remains to be thoroughly elucidated. Here, we characterize the molecular function of dP75, the Drosophila homolog of LEDGF/p75, during oogenesis. dP75 binds to transcriptionally active chromatin with its PWWP domain. The C-terminus integrase-binding domain-containing region of dP75 physically interacts with the histone kinase Jil-1 and stabilizes it in vivo. Together with Jil-1, dP75 prevents the spreading of the heterochromatin mark-H3K9me2-onto genes required for oogenesis and piRNA production. Without dP75, ectopical silencing of these genes disrupts oogenesis, activates transposons, and causes animal sterility. We propose that dP75, the homolog of an HIV host factor in Drosophila, partners with and stabilizes Jil-1 to ensure gene expression during oogenesis by preventing ectopic heterochromatin spreading. Copyright (C) 2020, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Limited and Science Press. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available