4.7 Article

Xiaoyaosan decoction alleviated rat liver fibrosis via the TGFβ/Smad and Akt/FoxO3 signaling pathways based on network pharmacology analysis

Journal

JOURNAL OF ETHNOPHARMACOLOGY
Volume 264, Issue -, Pages -

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.jep.2020.113021

Keywords

Xiaoyaosan decoction; Liver fibrosis; Network pharmacology; TGF beta/smad signaling pathway; Akt/FoxO3 signaling pathway

Funding

  1. Key Program of National Science Foundation of China [81330084]
  2. E-institutes of Shanghai Municipal Education Commission [E03008]

Ask authors/readers for more resources

This study aimed to investigate the anti-fibrosis effect of Xiaoyaosan decoction (XYS) and explore the molecular mechanisms using network pharmacology and transcriptomic technologies. The results showed that XYS significantly improved liver function and alleviated fibrotic changes, possibly through the TGFβ1/Smad and Akt/FoxO signaling pathways.
Ethnopharmacological relevance: Liver fibrosis is an outcome of many chronic liver diseases and often results in cirrhosis, liver failure, and even hepatocarcinoma. Xiaoyaosan decoction (XYS) as a classical Traditional Chinese Medicine (TCM) formula is used to liver fibrosis in clinical practice while its mechanism is unclear. Aim of the study: The aim of this study was to investigate the anti-fibrosis effect of XYS and to explore the molecular mechanisms by combining network pharmacology and transcriptomic technologies. Materials and methods: The carbon tetrachloride (CCl4)-induced liver fibrosis rat were treated with three doses of XYS. The liver fibrosis and function were evaluated by histopathological examination and serum biochemical detection. The fibrosis related protein a-SMA and collagen I were assessed by Western blot. Different expressed genes (DEGs) between XYS-treated group and model group were analyzed. The herb-component-target network was constructed combined the network pharmacology. The predict targets and pathways were validated by in vitro and in vivo experiments. Results: With XYS treatment, the liver function was significantly improved, and fibrotic changes were alleviated. The a-SMA and collagen I expression levels in the liver were also decreased in XYS-treated rats compared with CCl4 model rats. 108 active components and 42 targets from 8 herbs constituted herb-compound-target network by transcriptomics and network pharmacology analysis. The KEGG pathway and GO enrichment analyses showed that the FoxO, TGF beta, AMPK, MAPK, PPAR, and hepatitis B and C pathways were involved in the anti-fibrosis effects of XYS. In the liver tissues, p-FoxO3a and p-Akt expression levels were significantly increased in the CCl4 model group but decreased in the XYS-treated group. The TGF1 beta/Smad pathway and Akt/FoxO3 pathway were verified in LX2 cells by inhibiting phosphorylation of Smad3 and Akt activity, respectively. Conclusions: Our findings suggested that XYS markedly alleviated CC14-induced liver fibrosis in histopathological and serum liver function analyses, and this effect may occur via the TGF131/Smad and Akt/FoxO signaling pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available