4.4 Article

Characterization and modelling of cure-dependent properties and strains during composites manufacturing

Journal

JOURNAL OF COMPOSITE MATERIALS
Volume 54, Issue 22, Pages 3109-3124

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0021998320912470

Keywords

Autoclave; cure behaviour; thermosetting resin; process simulation

Ask authors/readers for more resources

The geometric stability of structural parts is a critical issue in the aeronautical industry. However, autoclave curing of primary structural composite parts may cause significant distortions and divergences between the mould nominal geometries and the final shapes of the parts. To be able to anticipate such distortions, a robust simulation tool is needed, which can be implemented only if the phenomena involved are properly understood and characterized. The thermo-kinetic behaviour of the M21EV/IMA prepreg is fully characterized in this paper. Thermal strains and chemical shrinkages are measured using Thermo-Mechanical Analysis during the cure and the experimental method developed allows the thermo-chemical strains to be obtained even during the early stages of the cure. An experimental setup is developed to measure the thermo-mechanical behaviour of the material during its cure. Thanks to these measurements, a new constitutive mechanical model, inspired from the CHILE model, is defined. These data are then used as inputs for an FEA simulation of the entire curing process. Finally, the model is validated using the cure degree, glass transition and temperature monitoring, and post-cure distortion measurements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available