4.4 Article

Quantifying abrasive-blasted surface roughness profiles using scanning electron microscopy

Journal

JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH
Volume 17, Issue 5, Pages 1231-1242

Publisher

SPRINGER
DOI: 10.1007/s11998-020-00342-3

Keywords

3D surface profile; Digital surface reconstruction; Statistical parameters; Fractal dimension; Scanning electron microscopy

Funding

  1. National Science Foundation [0619098]

Ask authors/readers for more resources

Rough surface profiles are specified for metal surfaces so that corrosion preventative coatings adhere well and provide long-term protection. Simple stylus scans and replica tape are widely used in industry to characterize surfaces and control the quality of surface preparation. Unfortunately, a scientific, quantitative connection between adhesion and surface profile parameters remains unclear. Stereo-pair images from scanning electron microscopy, SEM, were used to digitally reconstruct and then characterize 3D surfaces, which is a technique that seems previously unreported in coatings applications. SEM results were consistent with those from a stylus profilometer, but the data from a surface scan are much more numerous than from a line scan, and SEM can provide very high magnifications. 3D surfaces at high magnification gave larger values for the increase in area developed by the abrasive blasting than were determined at lower magnifications and by the stylus profilometer. Nevertheless, both techniques showed that the surface roughness height and ramification was far less than might be expected from illustrations in the existing literature on coatings' adhesion. Quantified characterization, with details shown at high magnification, may provide scientific insight into how the various features of a roughened surface enhance the adhesion of protective coatings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available