4.7 Review

Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 268, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2020.121725

Keywords

Organic pollutants; TiO2 based photocatalysts; Photocatalytic degradation; Processing parameters

Funding

  1. National Institute of Food and Agriculture, U.S. Department of Agriculture, CAP [1006847]
  2. Guangzhou Science and Technology Plan [201807010056]
  3. University of Minnesota Center for Biorefining
  4. NIFA [912204, 1006847] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Organic compounds, generated from different industries, produce a range of the problematic pollutants in wastewater. TiO2 based photocatalysts are novel materials that exhibit excellent absorption behavior toward organic compounds in wastewater due to their outstanding properties including nontoxicity, high photocatalytic degradation ability, and excellent thermal and chemical stabilities. However, several challenges exist regarding TiO2 applications for organic effluents such as particle aggregation, mass transfer limitation, poor affinity, high band energy, scattering conditions, and difficulty of recovery. Therefore, more design and optimization testing need to be conducted on the treatment conditions in order to reach higher removal efficiencies with lower costs. A variety of parameters of TiO2 based photocatalysts need to be studied: substrate, light intensity, dopant, particle size, structure. These parameters, which affect TiO2 photocatalytic activity on organic pollutants, are discussed in the current review. Thus, making the photocatalyst more anticipated and conducive to further research and development. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available