4.7 Article

Improving biohydrogen and biomethane co-production via two-stage dark fermentation and anaerobic digestion of the pretreated seaweed Laminaria digitata

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 251, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2019.119666

Keywords

Laminaria digitata; Cascading bioenergy conversion; Dark fermentation; Biohydrogen and biomethane; Hydrothermal pretreatment; Carbohydrate monomer

Funding

  1. National Key Research and Development Program-China [2016YFE0117900]
  2. Zhejiang Provincial Key Research and Development Program-China [2017C04001]
  3. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant [797259]
  4. Environmental Protection Agency - Ireland [2018-RE-MS-13]
  5. Science Foundation Ireland (SFI) through the Centre for Marine and Renewable Energy (MaREI) [12/RC/2302, 16/SP/3829]

Ask authors/readers for more resources

The marine macro-alga Laminaria digitata is an abundant brown seaweed, which may be used as a feedstock for gaseous biofuel production via sequential dark fermentation and anaerobic digestion. Various methods, including hydrothermal pretreatment (HTP), hydrothermal dilute acid pretreatment (HTDAP), enzymolysis, and combinations thereof, were employed to depolymerize L. digitata and assess the effects on biohydrogen and biomethane yields. Scanning electron microscopic images revealed that the intact and smooth structure of the seaweed was severely damaged; some micro-pores and debris were generated after HTP (140 degrees C for 20 min), whilst the undegraded components remained as filamentous structures. The complex carbohydrate polymers in L. digitata constrained the catalytic effects of glucoamylase, leading to limited increase in the yield of carbohydrate monomers. With the aid of H2SO4 (1 v/v%) in HTP, depolymerization of biomass and its further conversion to carbohydrate monomers were significantly improved. The yield of total carbohydrate monomers after HTDAP (0.564 g/gVS) was 3.5-fold that in raw biomass; this led to an increase of 60.8% in biohydrogen yield (57.4 mL/gVS) in the first-stage dark fermentation. However, the generation of byproducts such as hydroxymethylfurfural under such harsh conditions impaired the second-stage anaerobic digestion of hydrogenogenic effluent, resulting in a 25.9% decrease in biomethane yield. HTP was considered the optimum pretreatment improving energy conversion efficiency from seaweed to gaseous biofuels by 26.7% as compared to that of the unpretreated L. digitata. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available